Orientationally Ordered C₆₀ on *p*-Sexiphenyl Nanostripes on Ag(111)

Wei Chen,^{†,*} Hongliang Zhang,[†] Han Huang,[‡] Lan Chen,[‡] and Andrew Thye Shen Wee^{†,*}

[†]Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore, and [‡]Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Science Drive 3, 117542, Singapore, 2 Science Drive 3, 117542, Singapore

he controlled assembly of molecules into organic thin films with welldefined supramolecular arrangements on surfaces represents a major challenge, with potential applications in the field of organic electronic devices,¹⁻⁹ encompassing organic thin film transistors (OTFTs), organic light-emitting-diodes (OLEDs), and organic solar cells. Much attention has been recently devoted to understand the out-of-plane orientational ordering of planar π -conjugated molecules on surfaces, which is mainly governed by molecule-substrate interfacial interactions or the electronic structure of substrates.^{10–12} For example, by manipulating the surface electronic structure of Si(111), control of the molecular orientation of pentacene thin films has been realized, involving pentacene lyingdown on metallic Si(111)-($\sqrt{3} \times \sqrt{3}$)Au and standing up on semimetallic Si(111)-(5 imes2)Au.¹² Terminating Au(111) with selfassembled monolayers (SAMs) minimizes the electronic coupling between metal d-bands in Au(111) and extended π -orbitals in the organic overlayer, thereby resulting in the orientation transition of copper(II) phthalocyanine (CuPc) thin films from the lyingdown configuration on clean Au(111) to the standing-up configuration on SAMs modified Au(111).^{13–15}

The in-plane (azimuthal) orientational ordering of molecular monolayer crucially depends on the strong interfacial interaction between molecules and an interlocking with substrates or directional intermolecular interactions.^{16–19} For example, the in-plane triple intermolecular hydrogen bonding between perylene tetracarboxylic diimide (PTCDI) and melamine molecules leads to the formation of the well-ordered 2-dimensional (2D) nanoporous honeycomb supramolecular network on Ag-

ABSTRACT Long range orientational ordering within C_{60} monolayers is observed on *p*-sexithiophene (6P) monolayer nanostripes on Ag(111) at 77 K. Low-temperature scanning tunneling microscopy studies reveal that the C_{60} – 6P intermolecular interaction constrains all C_{60} molecules to adsorb on their hexagons atop 6P molecules. The orientation-dependent bond-to-bond Coulomb interaction between charge deficient single bonds and double bonds with excess charge in neighboring C_{60} molecules results in the in-plane orientational ordering and contributes to the lowering of the total energy of the orientationally ordered C_{60} islands.

KEYWORDS: self-assembly \cdot scanning tunneling microscopy $\cdot C_{60} \cdot$ molecular orientation \cdot monolayer

passivated Si(111).²⁰⁻²³ Fullerene molecular monolayers such as C60 usually adsorb with random or poorly ordered orientation. Hou, J. G. et al. recently reported the formation of two-dimensional (2D) orientationally ordered C₆₀ domains on self-assembled alky-Ithiols passivated Au(111) at 5 K, which results from a small orientation-dependent bond-to-bond Coulomb energy.²⁴ Theoretical calculations confirmed that the groundstate of 2D C₆₀ is a hexagonally closed packed lattice whereby all C₆₀ molecules have the same orientation.²⁵ By maximizing the overlap of neighboring molecular orbitals to lower the electron kinetic energy, a novel orientational ordering for potassium (K)-doped C₆₀ layer has been observed.²⁶ A complex orientationally ordered C₆₀ monolayer on Au(111) comprising 49 C₆₀ molecules in the unit cell mimicking the Si(111)-(7 \times 7) reconstruction has been recently reported in a low-temperature scanning tunneling microscopy (LT-STM) study, arising from molecule-substrate interactions as well as intermolecular interactions.²⁷ All these results suggest that the creation of orientationally ordered molecular thin films can be realized by manipulating the intermolecular and molecule-substrate interfacial interactions.

*Address correspondence to phycw@nus.edu.sg (W.C.), phyweets@nus.edu.sg (A.T.S.W.).

Received for review January 18, 2008 and accepted March 03, 2008.

Published online March 25, 2008. 10.1021/nn800033z CCC: \$40.75

© 2008 American Chemical Society

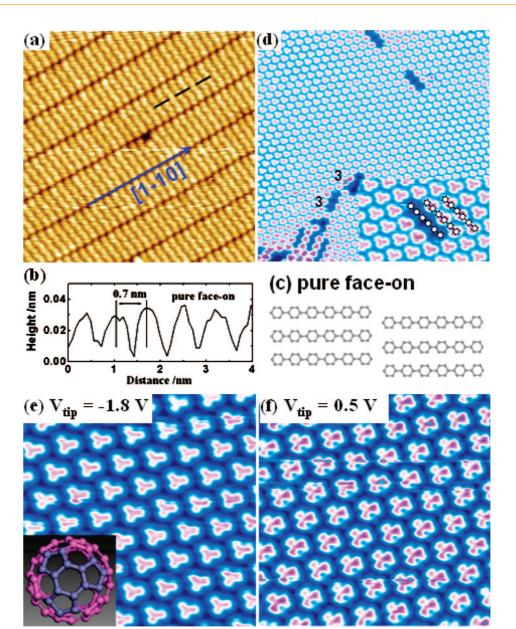


Figure 1. (a) The 20 × 20 nm² STM image of a "pure face-on" 6P monolayer nanostripe on Ag(111) ($V_{tip} = 1.8$ V); (b) the corresponding line profile as indicated by the dashed line in panel a; (c) the schematic drawing of molecular packing structure for the "pure face-on" 6P nanostripe; (d) 30 × 30 nm² STM image of orientationally ordered C₆₀ layer on 6P nanostripes ($V_{tip} = -1.8$ V), the inset showing the corresponding detailed image with the proposed packing structure of the underlying 6P molecules superimposed on the image. (e and f) The 8 × 8 nm² bias-dependent STM images of the orientationally ordered C₆₀ layer: $V_{tip} = -1.8$ V for panel e and $V_{tip} = 0.5$ V for panel f. The inset in panel e shows the cartoon of C₆₀ with proposed molecular orientation.

In this letter, we report the formation of orientationally ordered C_{60} monolayers on *p*-sexithiophene (6P) monolayer nanostripes on Ag(111) at 77 K. It is found that the C_{60} –6P intermolecular interaction constrains all C_{60} molecules to adsorb on a hexagon. The in-plane orientational ordering arises from the orientationdependent bond-to-bond Coulomb interaction between neighboring C_{60} molecules, lowering the total energy of the C_{60} islands.

RESULTS AND DISCUSSION

SNAN()

694

Figure 1a shows a 20 \times 20 nm² STM image of 6P monolayer on Ag(111), in which each rodlike bright fea-

ture represents an individual 6P molecule.^{29,30} Clearly, the 6P molecules self-assemble via side-by-side packing into highly ordered nanostripe array with a periodicity of 2.95 \pm 0.02 nm perpendicular to the chain direction. The line profile in Figure 1b, highlighted by the dashed line in Figure 1a, reveals an intermolecular distance of 0.70 \pm 0.02 nm along the chain direction. For 6P in the gas phase or for the isolated 6P molecules on metal surfaces,³¹ the adjacent phenyl units within 6P molecules are twisted with respect to each other because of steric hindrance of the hydrogen atoms of neighboring rings. These phenyl ring units become coplanar once 6P molecules form single crystal solids or condensed thin films

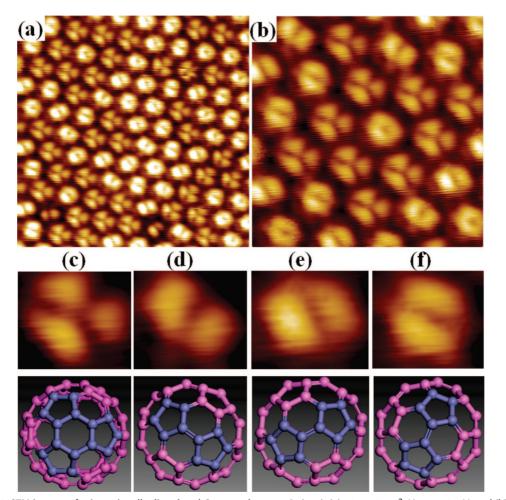


Figure 2. STM images of orientationally disordered C₆₀ monolayer on Ag(111): (a) 10 × 10 nm², $V_{tip} = -2.0$ V; and (b) 5 × 5 nm², $V_{tip} = -1.0$ V. Panels c–f show the detailed STM images of C₆₀ with different molecular orientation, and corresponding schematic models are shown below each image.

on substrates.^{29,30} The observed 6P molecular packing is very similar to that of α -sexithiophene on Ag(111) or on the highly ordered pyrolytic graphite (HOPG),^{32,33} and is referred to as the "pure face-on" 6P nanostripe phase. Figure 1c displays the schematic drawing of the proposed molecular packing structure.

After depositing 0.5 ML C₆₀ on the "pure face-on" 6P nanostripe template and subsequently annealing at 330 K for 30 min, hexagonally close packed (hcp) C₆₀ single layer islands form on top of the 6P monolayer nanostripes, as shown in Figure 1d. Several C₆₀ vacancy defects are also observed. Most defects correspond to three missing C₆₀ molecules along a close-packed direction, as indicated in Figure 1d. Apparently, all C₆₀ molecules possess 3-fold symmetry, suggesting that the C₆₀ molecules within the islands have the same molecular orientation when imaged at 77 K. Figure 1 panels e and f show the 8 \times 8 nm² bias-dependent STM images of the orientationally ordered C₆₀ layer on 6P nanostripes on Ag(111). The slight difference in STM images arises from the bias-dependent electronic states of C₆₀ molecules. Clearly, all C60 molecules have the same orientation with 3-fold symmetry under different biases, confirming our observation of an orientationally ordered C_{60} layer on 6P nanostripes. It has been reported that the bright lobes in the STM images under negative tip bias or positive sample bias correspond to pentagons of the C_{60} cage.^{27,34,35} The C_{60} with 3-fold symmetry has been assigned to C_{60} adsorbed on a hexagon,^{27,34} the proposed molecular orientation of which is displayed in the inset in Figure 1e.

In contrast, C_{60} molecules on clean Ag(111) nucleate into orientationally disordered 2D islands as shown in Figure 2a, which are obtained by room-temperature deposition of C_{60} on Ag(111) and subsequent annealing at 400 K. The bright—dim STM contrast of C_{60} molecules in the monolayer can be clearly observed, which was previously proposed to arise from the different coupling of C_{60} molecules with the underlying Ag(111) surface or C_{60} -induced reconstruction underneath the dim C_{60} molecules.^{36–43} These C_{60} molecules exhibit different orientations,⁴⁴ as evidenced by the different orientation patterns of C_{60} in the high resolution STM image in Figure 2b. The orientation patterns with 3- and 2-fold symmetry dominate the image. Figure 2c highlights the 3-fold orientation pattern of C_{60} adsorbed on a

www.acsnano.org

VOL. 2 • NO. 4 • 693-698 • 2008

696

SNANO

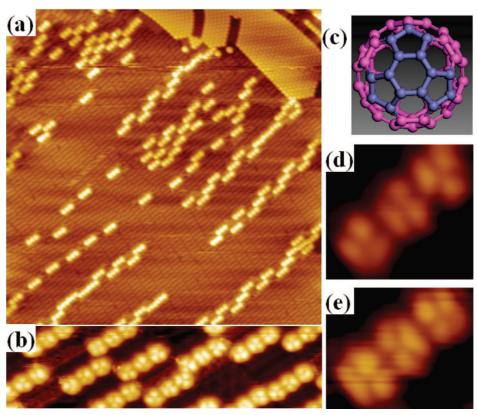


Figure 3. (a) The 80 × 80 nm² STM image near the domain boundary of an orientationally ordered C_{60} single island ($V_{tip} = 1.8$ V); (b) 20 × 5 nm² STM image clearly showing the orientation of C_{60} triplets adsorbed on individual 6P molecules ($V_{tip} = 1.9$ V). Panel c displays the schematic model of C_{60} adsorbs on a hexagon; panels d and e show the selected C_{60} triplets with different molecular orientation.

hexagon with the proposed orientation model shown below. Figure 2 panels d—f highlight the 2-fold orientation patterns with different in-plane rotations, arising from C₆₀ adsorbing on a double bond in between hexagons (6:6 bond); the corresponding models are shown below each image. Such an orientationally disordered C₆₀ monolayer is commonly observed on single crystalline metal substrates.^{27,44} This suggests that the orientational ordering of C₆₀ does not rely on strong C metal interfacial interactions.

Figure 3a displays the 80 \times 80 nm² STM image near the domain boundary of an orientationally ordered C₆₀ single island, where every three C₆₀ molecules group together linearly to form a short C₆₀ molecular rod, which we refer to as a C_{60} triplet. The apparent molecular length of 6P (\sim 2.95 nm) is close to the sum of the diameters of three C_{60} molecules (1.00 nm \times 3 = 3.00 nm).^{45,46} As such, we propose a model involving the adsorption of a C₆₀ triplet atop each 6P molecule. These C₆₀ triplets distribute randomly on the surface. Figure 3b shows the 20 imes 5 nm² STM image revealing the orientation of C60 triplets adsorbed on individual 6P molecules. Each C₆₀ molecule possesses the 3-fold symmetric orientation pattern, suggesting that every C₆₀ molecule adsorbs on a hexagon atop the 6P molecule. The schematic model showing the C₆₀ orientation is displayed in Figure 3c. We propose that the

preferential adsorption of C₆₀ triplet on each 6P molecule originates from the donor–acceptor intermolecular interaction or charge transfer between 6P (donor) and C₆₀ (acceptor). The C₆₀ molecule adsorbing on a hexagon atop the 6P molecule represents the energetic favorable adsorption geometry of C₆₀ on 6P. However, more detailed experiments are needed to resolve this hypothesis.

Two selected C₆₀ triplets are highlighted in Figure 3d,e. Although all the C₆₀ molecules have the same 3-fold symmetry, the in-plane orientation is rather disordered. Careful inspection of Figure 3b reveals more than 5 different in-plane orientations of the 3-fold symmetric C_{60} molecules. This suggests that the $6P-C_{60}$ donor-acceptor intermolecular interaction cannot ensure the in-plane orientational ordering of the C_{60} monolayer. As shown in Figure 1d,e, all the C₆₀ molecules within the hcp monolayer on the "pure face-on" 6P nanostripe arrays possess the same 3-fold symmetric orientation pattern and are orientationally ordered. We propose that the 6P-C₆₀ donor-acceptor intermolecular interaction constrains all the C₆₀ molecules to adsorb on a hexagon atop the 6P molecule. It has been reported that the bond-to-bond Coulomb interaction between charge deficient single bonds and charge excess double bonds of neighboring C60 molecules depends on the relative C_{60} orientations.^{34,35,47} This contributes to lowering the total energy of C₆₀ islands and thereby leads to the formation of orientationally ordered C₆₀ domains on self-assembled alkylthiols passivated Au(111) at 5 K. As such, we suggest that such orientation dependent bond-to-bond Coulomb interaction between neighboring C60 molecules controls the in-plane orientational ordering of C₆₀ on 6P nanostripes. The cumulative effects of the 6P-C₆₀ donor-acceptor interaction and the orientation dependent bond-to-bond Coulomb interaction lead to the formation of orientationally ordered C₆₀ hcp monolayer on the "pure face-on" 6P nanostripe template. It is worth noting that the underlying 6P layer cannot retain its original nanostripe arrangement due to the C_{60} -6P interaction resulting in the transition from 2-fold to 3-fold symmetry. 6P molecules are proposed to undergo structural reorganization to accommodate the hcp arrangement of the C₆₀ adlayer.

In conclusion, we have demonstrated the control of the molecular orientational freedom by manipulating the intermolecular and interfacial interactions. LT-STM studies reveal the growth of orientationally ordered hexagonally close-packed C_{60} monolayer on the "pure

face-on" 6P nanostripe template. The orientational ordering originates from two factors: (i) the $6P-C_{60}$ donor-acceptor intermolecular interaction which constrains all C₆₀ molecules to adsorb on a hexagon atop 6P molecules; and (ii) the orientation-dependent bond-tobond Coulomb interaction between charge deficient single bonds and charge excess double bonds of neighboring C₆₀ molecules, which results in the in-plane orientational ordering and contributes to the lowering of the total energy of the orientationally ordered C₆₀ islands. Our present approach provides a feasible process to control the molecular orientational freedom of organic thin films by manipulating the intermolecular and molecule-substrate interfacial interactions. This may have potential applications in organic thin films based OTFTs, OLEDs, and organic solar cells. In particular, a similar process can be easily applied to manipulate the molecular orientation of endohedral fullerenes, which can lead to the possible control of the electronic spin direction inside the fullerene cage, thereby facilitating the design and construction of fullerene-based solid state quantum computers.48

EXPERIMENTAL SECTION

The STM experiments were conducted with an Omicron lowtemperature scanning tunneling microscope (LT-STM) housed in a multichamber UHV system with a base pressure better than 5.0×10^{-11} mbar and interfaced to a Nanonis controller (Nanonis, Switzerland).^{32,33,49} All STM imaging were performed at 77 K. A clean Ag(111) surface with large terraces was obtained after a few cycles of Ar⁺ ion bombardment and subsequent annealing at 800 K. C₆₀ and *p*-sexiphenyl (6P) molecules were evaporated in situ from two separated low-temperature Knudsen cells (MBE-Komponenten, Germany) onto the samples held at room temperature (RT) in the growth chamber. The deposition rates of C_{60} and 6P were monitored by a quartz-crystal-microbalance (QCM) during evaporation, and were further calibrated by counting the adsorbed molecule coverage in the large-scale LT-STM images at coverage below 1 monolayer (1 monolayer = one full monolayer of hexagonally close packed C₆₀ or the "pure face-on" 6P). In our experiments, all depositions were performed at constant rates of about 0.05 ML/min for C_{60} and 0.10 ML/min for 6P, respectively. During deposition, the chamber pressure was maintained below 5.0×10^{-10} mbar.

Acknowledgment. W. Chen acknowledges the financial support by LKY PDF fellowship. The authors acknowledge the support from the A*STAR Grant R-398-000-036-305 and ARF Grant R-144-000-196-112.

REFERENCES AND NOTES

- Dimitrakopoulos, C. D.; Malenfant, P. R. L. Organic Thin Film Transistors for Large Area Electronics. *Adv. Mater.* 2002, 14, 99–117.
- Sylvester-Hvid, K. O. Two-Dimensional Simulations of CuPc-PCTDA Solar Cells: The Importance of Mobility and Molecular π-Stacking. J. Phys. Chem. B 2006, 110, 2618–2627.
- de Bettignies, V.; Nicolas, Y.; Blanchard, P.; Levillain, E.; Nunzi, J-M.; Roncali, J. Planarized Star-Shaped Oligothiophenes as a New Class of Organic Semiconductors for Heterojunction Solar Cells. *Adv. Mater.* 2003, 15, 1939–1943.

- Videlot, C.; El Kassmi, A.; Fichou, D. Photovoltaic Properties of Octithiophene-Based Schottky and p/n Junction Cells: Influence of Molecular orientation. *Sol. Energy. Mater. Sol. Cells* 2000, *63*, 69–82.
- Loi, M. A.; Da Como, E.; Dinelli, F.; Murgia, M.; Zamboni, R.; Biscarini, F.; Muccini, M. Supramolecular Organization in Ultra-thin Films of Alpha-Sexithiophene on Silicon Dioxide. *Nat. Mater.* 2005, *4*, 81–85.
- Barrena, E.; de Oteyza, D. G.; Sellner, S.; Dosch, H.; Ossó, J. O.; Struth, B. In Situ Study of the Growth of Nanodots in Organic Heteroepitaxy. *Phys. Rev. Lett.* **2006**, *97*, 076102.
- de Oteyza, D. G.; Barrena, E.; Ossó, J. O.; Sellner, S.; Dosch, H. Site-Selective Molecular Organization in Organic Heterostructures. *Chem. Mater.* 2006, *18*, 4212–4214.
- Oehzelt, M.; Koller, G.; Ivanco, J.; Berkebile, S.; Haber, T.; Resel, R.; Netzer, F. P.; Ramsey, M. G. Organic Heteroepitaxy: p-Sexiphenyl on Uniaxially Oriented Alpha-Sexithiophene. *Adv. Mater.* **2006**, *18*, 2466–2470.
- Koller, G.; Berkebile, S.; Krenn, J. R.; Netzer, F. P.; Oehzelt, M.; Haber, T.; Resel, R.; Ramsey, M. G. Heteroepitaxy of Organic - Organic Nanostructures. *Nano. Lett.* **2006**, *6*, 1207–1212.
- Peisert, H.; Schwieger, T.; Auerhammer, J. M.; Knupfer, M.; Golden, M. S.; Fink, J.; Bressler, P. R.; Mast, M. Order on Disorder: Copper Phthalocyanine Thin Films on Technical Substrates. J. Appl. Phys. 2001, 90, 466–469.
- Kowarik, S.; Gerlach, A.; Sellner, S.; Schreiber, F.; Cavalcanti, L.; Konovalov, O. Real-Time Observation of Structural and Orientational Transitions During Growth of Organic Thin Films. *Phys. Rev. Lett.* **2006**, *96*, 125504.
- Thayer, G. E.; Sadowski, J. T.; zu Heringdorf, F. M.; Sakurai, T.; Tromp, R. M. Role of Surface Electronic Structure in Thin Film Molecular Ordering. *Phys. Rev. Lett.* **2005**, *95*, 256106.
- Chen, W.; Huang, C.; Gao, X. Y.; Wang, L.; Zhen, C. G.; Qi, D. C.; Chen, S.; Zhang, H. L.; Loh, K. P.; Chen, Z. K.; Wee, W. T. S. Tuning the Hole Injection Barrier at the Organic/Metal Interface with Self-Assembled Functionalized Aromatic Thiols. J. Phys. Chem. B. 2006, 110, 26075–26080.

- Chen, W.; Chen, S.; Qi, D. C.; Gao, X. Y.; Chen, Z. K.; Wee, W. T. S. Surface-Transfer Doping of Organic Semiconductors Using Functionalized Self-Assembled Monolayers. *Adv. Funct. Mater.* **2007**, *17*, 1339–1344.
- Chen, W.; Wang, L.; Qi, D. C.; Chen, S.; Gao, X. Y.; Wee,
 A. T. S. Probing the Ultrafast Electron Transfer at the CuPc/ Au(111) Interface. *Appl. Phys. Lett.* **2006**, *88*, 184102.
- Barth, J. V.; Constantini, G.; Kern, K. Engineering Atomic and Molecular Nanostructures at Surfaces. *Nature* 2005, 437, 671–679.
- Rosei, F. Nanostructured Surfaces: Challenges and Frontiers in Nanotechnology. J. Phys.: Condens. Matter 2004, 16, S1373–S1436.
- Chen, W.; Wee, A. T. S. Self-Assembly on Silicon Carbide Nanomesh Templates. J. Phys. D: Appl. Phys. 2007, 40, 6287–6299.
- Rosei, F.; Schunack, M.; Naitoh, Y.; Jiang, P.; Gourdon, A.; Laegsgaard, E.; Stensgaard, I.; Joachim, C.; Besenbacher, F. Properties of Large Organic Molecules on Metal Surfaces. *Prog. Surf. Sci.* 2003, *71*, 95–146.
- Theobald, J. A.; Oxtoby, N. S.; Phillips, M. A.; Champness, N. R.; Beton, P. H. Controlling Molecular Deposition and Layer Structure with Supramolecular Surface Assemblies. *Nature* 2003, 424, 1029–1031.
- Theobald, J. A.; Oxtoby, N. S.; Champness, N. R.; Beton, P. H.; Dennis, T. J. S. Growth Induced Reordering of Fullerene Clusters Trapped in a Two-Dimensional Supramolecular Network. *Langmuir* **2005**, *21*, 2038–2041.
- Perdigão, L. M. A.; Perkins, E. W.; Ma, J.; Staniec, P. A.; Rogers, B. L.; Champness, N. R.; Beton, P. H. Bimolecular Networks and Supramolecular Traps on Au(111). *J. Phys. Chem. B* 2006, *110*, 12539–12542.
- Staniec, P. A.; Perdigao, L. M. A.; Saywell, A.; Champness, N. R.; Beton, P. H. Hierarchical Organisation on a Two-Dimensional Supramolecular Network. *ChemPhysChem* 2007, 8, 2177–2181.
- Hou, J. G.; Yang, J. L.; Wang, H.; Li, Q.; Zeng, C. G.; Yuan, L.; Wang, B.; Chen, D. M.; Zhu, Q. S. Surface Science -Topology of Two-Dimensional C₆₀ Domains. *Nature* 2001, 409, 304–305.
- Yuan, L. F.; Yang, J. L.; Wang, H. Q.; Zeng, C. G.; Li, Q. X.; Wang, B.; Hou, J. G.; Zhu, Q. S.; Chen, D. M. Low-Temperature Orientationally Ordered Structures of Two-Dimensional C₆₀. J. Am. Chem. Soc. **2003**, 125, 169–172.
- 26. Wang, Y. Y.; Yamachika, R.; Wachowiak, A.; Grobis, M.; Khoo, K. H.; Lee, D.-H.; Louie, S. G.; Crommie, M. F. Novel Orientational Ordering and Reentrant Metallicity in KxC₆₀ Monolayers for $3 \le x \le 5$. *Phys. Rev. Lett.* **2007**, *99*, 086402.
- 27. Schull, G.; Berndt, R. Orientationally Ordered (7 \times 7) Superstructure of C₆₀ on Au(111). *Phys. Rev. Lett.* **2007**, *99*, 226105.
- France, C. B.; Frame, F. A.; Parkinson, B. A. Multiple Two-Dimensional Structures Formed at Monolayer and Submonolayer Coverages of *p*-Sexiphenyl on the Au(111) Surface. *Langmuir* **2006**, *22*, 7507–7511.
- France, C. B.; Parkinson, B. A. Physical and Electronic Structure of *p*-Sexiphenyl on Au(111). *App. Phys. Lett.* 2003, *82*, 1194–1196.
- Koller, G.; Berkebile, S.; Oehzelt, M.; Puschnig, P.; Ambrosch-Draxl, C.; Netzer, F. P.; Ramsey, M. G. Intra- and Intermolecular Band Dispersion in an Organic Crystal. *Science* 2007, *317*, 351–355.
- Hla, S. W.; Braun, K. F.; Wassermann, B.; Rieder, K. H. Controlled Low-Temperature Molecular Manipulation of Sexiphenyl Molecules on Ag(111) Using Scanning Tunneling Microscopy. *Phys. Rev. Lett.* **2004**, *93*, 208302.
- Zhang, H. L.; Chen, W.; Chen, L.; Huang, H.; Wang, X. S.; Yuhara, J.; Wee, A. T. S. C₆₀ Molecular Chains on α-Sexithiophene Nanostripes. *Small* 2007, 3, 2015–2018.
- Huang, H.; Chen, W.; Chen, L.; Zhang, H. L.; Wang, X. S.; Bao, S. N.; Wee, A. T. S. "Zigzag" C₆₀ Chain Arrays. *Appl. Phys. Lett.* **2008**, *92*, 023105.

- 34. Wang, H.; Zeng, C.; Wang, B.; Hou, J. G.; Li, Q.; Yang, J. Orientational Configurations of the C₆₀ Molecules in the (2 \times 2) Superlattice on a Solid C₆₀(111) Surface at Low Temperature. *Phys. Rev. B* **2001**, *63*, 085417.
- Hou, J. G.; Yang, J. L.; Wang, H. Q.; Li, Q. X.; Zeng, C. G.; Lin, H.; Wang, B.; Chen, D. M.; Zhu, Q. S. Identifying Molecular Orientation of Individual C₆₀ on a Si(111)-(7 × 7) Surface. *Phys. Rev. Lett.* **1999**, *83*, 3001–3004.
- Pai, W. W.; Hsu, C-L.; Lin, M. C.; Lin, K. C.; Tang, T. B. Structural Relaxation of Adlayers in the Presence of Adsorbate-Induced Reconstruction: C₆₀/Cu(111). *Phys. Rev.* B 2004, 69, 125405.
- Pai, W. W.; Hsu, C-L.; Chiang, C. R.; Chang, Y.; Lin, K. C. Origin of Peculiar STM Molecular Contrast in C₆₀/Ag (100). Surf. Sci. 2002, 519, L605–L610.
- Hsu, C-L.; Pai, W. W. Aperiodic Incommensurate Phase of a C₆₀ Monolayer on Ag(100). *Phys. Rev. B* 2003, 68, 245414.
- Pai, W. W.; Hsu, C-L. Ordering of an Incommensurate Molecular Layer with Adsorbate-Induced Reconstruction: C₆₀/Ag(100). *Phys. Rev. B* **2003**, *68*, 121403.
- Murray, P. W.; Pedersen, M. O.; Lægsgaard, E.; Stensgaard, I.; Besenbacher, F. Growth of C₆₀ on Cu(110) and Ni(110) Surfaces: C₆₀-Induced Interfacial Roughening. *Phys. Rev. B* 1997, *55*, 9360–9363.
- Zhang, X.; He, W.; Zhao, A. D.; Li, H. N.; Chen, L.; Pai, W. W.; Hou, J. G.; Loy, M. M. T.; Yang, J. L.; Xiao, X. D. Geometric and Electronic Structure of a C₆₀ Monolayer on Ag(100). *Phys. Rev. B* **2007**, *75*, 235444.
- Wang, H. Q.; Hou, J. G.; Takeuchi, O.; Fujisuku, Y.; Kawazu, A. STM Observations of Ag-Induced Reconstruction of C₆₀ Thin Films. *Phys. Rev. B* **2000**, *61*, 2199–2203.
- Chen, W.; Zhang, H. L.; Xu, H.; Tok, E. S.; Loh, K. P.; Wee, A. T. S. C₆₀ on SiC Nanomesh. *J. Phys. Chem. B* **2006**, *110*, 21873–21881.
- Lu, X. H.; Grobis, M.; Khoo, K. H.; Louie, S. G.; Crommie, M. F. Spatially Mapping the Spectral Density of a Single C₆₀ Molecule. *Phys. Rev. Lett.* **2003**, *90*, 096802.
- Heiney, P. A.; Fischer, J. E.; McGhie, A. R.; Romanow, W. J.; Denenstein, A. M.; McCauley, J. P.; Smith, A. B.; Cox, D. E. Orientational Ordering Transition in Solid C₆₀. *Phys. Rev. Lett.* **1991**, *66*, 2911–2914.
- Altman, E. I.; Colton, R. J. Determination of the Orientation of C₆₀ Adsorbed on Au(111) and Ag(111). *Phys. Rev. B* 1993, 48, 18244–18249.
- Lu, J. P.; Li, X. P.; Martin, R. M. Ground-State and Phase-Transitions in Solid C₆₀. *Phys. Rev. Lett.* **1992**, *68*, 1551–1554.
- Benjamin, S. C.; Ardavan, A.; Briggs, G. A. D.; Britz, D. A.; Gunlycke, D.; Jefferson, J.; Jones, M. A. G.; Leigh, D. F.; Lovett, B. W.; Khlobystov, A. N.; et al. Towards a Fullerene-Based Quantum Computer. J. Phys.: Condens. Matter 2006, 18, S867–S883.
- Chen, W.; Huang, H.; Chen, S.; Chen, L.; Zhang, H. L.; Gao, X. Y.; Wee, A. T. S. Molecular Orientation of 3,4,9,10-Perylene-tetracarboxylic-dianhydride Thin Films at Organic Heterojunction Interfaces. *Appl. Phys. Lett.* 2007, *91*, 114102.